Accessors to a cubble object

# S3 method for class 'spatial_cubble_df'
data[i, j, drop = FALSE]

# S3 method for class 'temporal_cubble_df'
data[i, j, drop = FALSE]

# S3 method for class 'spatial_cubble_df'
names(x) <- value

# S3 method for class 'temporal_cubble_df'
names(x) <- value

# S3 method for class 'cubble_df'
x[[i]] <- value

Arguments

data

an object of class spatial_cubble_df or temporal_cubble_df

i, j

row and column selector

drop

logical. If TRUE the result is coerced to the lowest possible dimension. The default is to drop if only one column is left, but not to drop if only one row is left.

x

data frame.

value

a suitable replacement value: it will be repeated a whole number of times if necessary and it may be coerced: see the Coercion section. If NULL, deletes the column if a single column is selected.

Details

For nested cubbles, [ will return a cubble object if the key variable, thecoords variables, and the ts column all present. If the cubble object is also an sf object, the sticky select behavior on the sf column will preserve. For long cubbles, [ will return a cubble object if the key and index variable both present. When a cubble can't be created and the data is not an sf class, [ will always return a tibble, even with single index selection.

Examples

climate_mel[c(1:3, 7)] # a nested cubble
#> # cubble:   key: id [3], index: date, nested form
#> # spatial:  [144.83, -37.98, 145.1, -37.67], Missing CRS!
#> # temporal: date [date], prcp [dbl], tmax [dbl], tmin [dbl]
#>   id           long   lat ts               
#>   <chr>       <dbl> <dbl> <list>           
#> 1 ASN00086038  145. -37.7 <tibble [10 × 4]>
#> 2 ASN00086077  145. -38.0 <tibble [10 × 4]>
#> 3 ASN00086282  145. -37.7 <tibble [10 × 4]>
make_spatial_sf(climate_mel)[1:3] # an sf
#> CRS missing: using OGC:CRS84 (WGS84) as default
#> Simple feature collection with 3 features and 3 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 144.8321 ymin: -37.98 xmax: 145.0964 ymax: -37.6655
#> Geodetic CRS:  WGS 84
#> # A tibble: 3 × 4
#>   id           long   lat            geometry
#>   <chr>       <dbl> <dbl>         <POINT [°]>
#> 1 ASN00086038  145. -37.7 (144.9066 -37.7276)
#> 2 ASN00086077  145. -38.0   (145.0964 -37.98)
#> 3 ASN00086282  145. -37.7 (144.8321 -37.6655)

long <- climate_mel |> face_temporal()
long[1:3] # a long cubble
#> # cubble:   key: id [3], index: date, long form
#> # temporal: 2020-01-01 -- 2020-01-10 [1D], no gaps
#> # spatial:  long [dbl], lat [dbl], elev [dbl], name [chr], wmo_id [dbl]
#>    id          date        prcp
#>    <chr>       <date>     <dbl>
#>  1 ASN00086038 2020-01-01     0
#>  2 ASN00086038 2020-01-02     0
#>  3 ASN00086038 2020-01-03     0
#>  4 ASN00086038 2020-01-04     0
#>  5 ASN00086038 2020-01-05    18
#>  6 ASN00086038 2020-01-06   104
#>  7 ASN00086038 2020-01-07    14
#>  8 ASN00086038 2020-01-08     0
#>  9 ASN00086038 2020-01-09     0
#> 10 ASN00086038 2020-01-10     0
#> # ℹ 20 more rows

climate_mel[1:3] # tibble
#> # A tibble: 3 × 3
#>   id           long   lat
#>   <chr>       <dbl> <dbl>
#> 1 ASN00086038  145. -37.7
#> 2 ASN00086077  145. -38.0
#> 3 ASN00086282  145. -37.7
long[2:5] # tibble
#> # A tibble: 30 × 4
#>    date        prcp  tmax  tmin
#>    <date>     <dbl> <dbl> <dbl>
#>  1 2020-01-01     0  26.8  11  
#>  2 2020-01-02     0  26.3  12.2
#>  3 2020-01-03     0  34.5  12.7
#>  4 2020-01-04     0  29.3  18.8
#>  5 2020-01-05    18  16.1  12.5
#>  6 2020-01-06   104  17.5  11.1
#>  7 2020-01-07    14  20.7  12.1
#>  8 2020-01-08     0  26.4  16.4
#>  9 2020-01-09     0  33.1  17.4
#> 10 2020-01-10     0  34    19.6
#> # ℹ 20 more rows
climate_mel[1] # still tibble
#> # A tibble: 3 × 1
#>   id         
#>   <chr>      
#> 1 ASN00086038
#> 2 ASN00086077
#> 3 ASN00086282
long[1] # and still tibble
#> # A tibble: 30 × 1
#>    id         
#>    <chr>      
#>  1 ASN00086038
#>  2 ASN00086038
#>  3 ASN00086038
#>  4 ASN00086038
#>  5 ASN00086038
#>  6 ASN00086038
#>  7 ASN00086038
#>  8 ASN00086038
#>  9 ASN00086038
#> 10 ASN00086038
#> # ℹ 20 more rows