The temporal processing module is used to aggregate data along the temporal
dimension. Current available aggregation recipe includes
temporal_rolling_window
.
Usage
temporal_aggregate(data, ...)
temporal_rolling_window(
var,
scale,
.before = 0L,
.step = 1L,
.complete = TRUE,
rm.na = TRUE,
...
)
Arguments
- data
an index table object, see [tidyindex::init()]
- ...
an temporal processing object of class
temporal_agg
- var
the variable to aggregate
- scale
numeric, the scale (window) of the aggregation
- .before, .step, .complete
see
slide_dbl
- rm.na
logical, whether to remove the first few rows with NAs
Examples
tenterfield |>
init(time = ym) |>
temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12))
#> Index pipeline:
#>
#> Steps:
#> temporal: `rolling_window()` -> .agg
#>
#> Data:
#> # A tibble: 358 × 10
#> id ym prcp tmax tmin tavg long lat name .agg
#> <chr> <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 ASN00056032 1990 Dec 640 30.4 14.7 22.6 152. -29.0 tenterfield … 8382
#> 2 ASN00056032 1991 Jan 1108 27.5 15.9 21.7 152. -29.0 tenterfield … 8608
#> 3 ASN00056032 1991 Feb 628 28.0 15.5 21.8 152. -29.0 tenterfield … 7976
#> 4 ASN00056032 1991 Mar 204 26.2 11.8 19.0 152. -29.0 tenterfield … 7926
#> 5 ASN00056032 1991 Apr 44 24.2 6.57 15.4 152. -29.0 tenterfield … 6376
#> 6 ASN00056032 1991 May 630 21.3 7.52 14.4 152. -29.0 tenterfield … 5786
#> 7 ASN00056032 1991 Jun 242 19.6 3.65 11.6 152. -29.0 tenterfield … 5634
#> 8 ASN00056032 1991 Jul 580 15.3 0.519 7.91 152. -29.0 tenterfield … 5596
#> 9 ASN00056032 1991 Aug 14 17.8 1.67 9.76 152. -29.0 tenterfield … 5276
#> 10 ASN00056032 1991 Sep 78 21.1 3.07 12.1 152. -29.0 tenterfield … 5088
#> # ℹ 348 more rows
# multiple ids (groups), and multiple scales
queensland |>
dplyr::filter(id %in% c("ASN00029038", "ASN00029127")) |>
init(id = id, time = ym) |>
temporal_aggregate(temporal_rolling_window(prcp, scale = c(12, 24)))
#> Index pipeline:
#>
#> Steps:
#> temporal: `rolling_window()` -> rolling_window_12
#> temporal: `rolling_window()` -> rolling_window_24
#>
#> Data:
#> # A tibble: 754 × 11
#> id ym prcp tmax tmin tavg long lat name rolling_window_12
#> <chr> <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 ASN0002… 1990 Dec 1869 34.4 24.5 29.4 142. -15.5 KOWA… 7384
#> 2 ASN0002… 1991 Jan 5088 31.2 24.4 27.8 142. -15.5 KOWA… 10790
#> 3 ASN0002… 1991 Feb 8484 30.5 24.1 27.3 142. -15.5 KOWA… 18858
#> 4 ASN0002… 1991 Mar 1270 33.1 23.4 28.2 142. -15.5 KOWA… 18102
#> 5 ASN0002… 1991 Apr 174 32.4 21.9 27.2 142. -15.5 KOWA… 17679
#> 6 ASN0002… 1991 May 0 31.7 17.1 24.4 142. -15.5 KOWA… 17435
#> 7 ASN0002… 1991 Jun 0 31.3 15.1 23.2 142. -15.5 KOWA… 17265
#> 8 ASN0002… 1991 Jul 0 30.4 14.7 22.5 142. -15.5 KOWA… 17163
#> 9 ASN0002… 1991 Aug 2 32.0 14.8 23.4 142. -15.5 KOWA… 17165
#> 10 ASN0002… 1991 Sep 0 34.2 16.5 25.3 142. -15.5 KOWA… 17165
#> # ℹ 744 more rows
#> # ℹ 1 more variable: rolling_window_24 <dbl>