Given the orthonormality constraint, the projection bases live in a high dimensional hollow sphere. Generating random points on the sphere is useful to perceive the data object in the high dimensional space.
See also
Other bind:
bind_random_matrix()
,
bind_theoretical()
Examples
bind_random(holes_1d_better) %>% tail(5)
#> # A tibble: 5 × 8
#> basis index_val info method alpha tries loop id
#> <list> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 <dbl [5 × 1]> NA randomly_generated randomly_g… NA NA NA 0
#> 2 <dbl [5 × 1]> NA randomly_generated randomly_g… NA NA NA 0
#> 3 <dbl [5 × 1]> NA randomly_generated randomly_g… NA NA NA 0
#> 4 <dbl [5 × 1]> NA randomly_generated randomly_g… NA NA NA 0
#> 5 <dbl [5 × 1]> NA randomly_generated randomly_g… NA NA NA 0