Sentiment analysis

1 Learning objectives

Workflow for sentiment analysis with tidytext:

e Step 1: Read in the text

o Step 2: Tokenize text into individual words: tidytext: :unnest_tokens ()

o Step 3: Remove stop words: tidytext::stop_words + anti_join()

e Step 4: Associate individual words with positive or negative sentiment: tidytext::sentiments,
inner_join()

e Step 5: Compute the proportion of positive sentiment words in each chapter: dplyr verbs

o Step 6: Plot the positive sentiment across chapters: ggplot

1.1 Load libraries

library(tidyverse)
library(tidytext)

1.2 Sentiment analysis of Life of Pi

this will load an object called “life_of_pi’
load(here: :here("data/life_of_pi.rda"))
dt <- tibble(text = read_lines(life_of_pi))

dt

A few things to do in cleaning:

e assign each line a chapter number

e remove all the title lines: “Yann Martel: Life of Pi”
o remove all the page lines: “Page 1”

e remove empty lines

dt_clean <- dt |>

mutate (
how can you locate the lines with new chapter?
chapter = str_...(text, "..."),
how can you locate the page lines: "Page 1"?
page = str_...(text, "..."),
how can you locate the title lines: "Yann Martel: Life of Pi"?
title = str_...(text, "...")) [>
assign each line a chapter number
mutate(chapter = ... (chapter)) |[>
remove empty lines:
mutate(blank = str_detect(text, "[a-zA-Z0-9]+", negate = ...)) [|>

remove all the page and title line, empty line, and lines before chapter 1
filter(...) [>
select(-page, -title, -blank)

1.3 Unnest token
unnest_tokens:

e tbl: A data frame

e output: Output column to be created as string or symbol.

o input: Input column that gets split as string or symbol. The output/input arguments are passed by
expression and support quasiquotation; you can unquote strings and symbols.

o token: Unit for tokenizing, or a custom tokenizing function. Built-in options are “words” (default),
“characters”, “character_shingles”, “ngrams”, “skip_ngrams”, “sentences”, “lines”, “paragraphs”,
“regex”, and “ptb” (Penn Treebank). If a function, should take a character vector and return a list of
character vectors of the same length.

dt_tokens <- dt_clean |>
unnest_tokens (output = word, input = ..., token = "...")
dt_tokens

1.4 Stop words

What are the most common words in Life of Pi?

dt_tokens |> count(word, sort = TRUE)

Are they useful for the analysis?
In the tidytext package, there is a built-in dataset called stop_words that contains common stop words
from three lexicons: “onix”, “SMART”, and “snowball”.

tidytext::stop_words
stop_words |> count(lexicon)

We want to merge the two datasets together so that only the token NOT in the stopword_df is preserved -
which join should we use?
stopword_df <- stop_words |>

filter(lexicon == "SMART") |[>

select (word)

dt_joined <- dt_tokens |> ..._join(stopword_df, by = "word")
dt_joined

1.5 Sentiment data

In the tidytext package, there is a built-in dataset called sentiments that contains words and their
associated sentiments from three lexicons: “AFINN”, “bing”, and “nrc”.

We want to attach each word with a sentiment label (positive or negative). We can only do that for words
that’s in the sentiments dictionary - Which join should we use?
tidytext: :sentiments
dt_joined2 <- dt_joined |>
..._join(sentiments, by = "word")
dt_joined?2

What happen if you use left_join()?

1.6 Visualization

It can be useful to look at how the positive/ negative sentiment changes as the story progresses. How would
you calculate the proportion of positive sentiment words in each chapter?

sentiment_df <- dt_joined2 |>
group_by(chapter, sentiment) |>
summarise(n = n(), .groups = "drop") |>
pivot_wider (names_from = sentiment, values_from = n) |>
mutate(prop = positive / (positive + negative))

sentiment_df2 <- dt_joined2 |>
group_by(chapter, sentiment) |>
summarise(n = n(), .groups = "drop") |[>
group_by (chapter) |>
mutate(prop = n / sum(n)) |>
filter(sentiment == "positive")

sentiment_df2 |[>
ggplot(aes(x = chapter, y = prop)) +
geom_line() +
geom_point () +
geom_hline(yintercept = 0.5, linetype = "dashed")

Does any part of this plot prompt further investigation?

sentiment_df2 |> arrange(-prop)
dt_clean |> filter(chapter == 18)

How come we have Chapter 18 labelled for Chapter 197

dt_clean |> filter(chapter == 7)
dt_clean |> filter(chapter == 8)
dt_clean |> filter(chapter == 10)
dt_clean |> filter(chapter == 13)
dt_clean |> filter(chapter == 15)
dt_clean |> filter(chapter == 14)

Something is funny at Chapter 14 and 15.
dt_clean |> filter(chapter == 14) |> View()

What do you find when you View() Chapter 147 Can you tell why this is the case? What would you do to
fix it?

	Learning objectives
	Load libraries
	Sentiment analysis of Life of Pi
	Unnest token
	Stop words
	Sentiment data
	Visualization

