Sentiment analysis

1 Learning objectives

Workflow for sentiment analysis with tidytext:

e Step 1: Read in the text

o Step 2: Tokenize text into individual words: tidytext: :unnest_tokens ()

o Step 3: Remove stop words: tidytext::stop_words + anti_join()

e Step 4: Associate individual words with positive or negative sentiment: tidytext::sentiments,
inner_join()

e Step 5: Compute the proportion of positive sentiment words in each chapter: dplyr verbs

o Step 6: Plot the positive sentiment across chapters: ggplot

1.1 Load libraries

library(tidyverse)
library(tidytext)

1.2 Sentiment analysis of Life of Pi

# this will load an object called “life_of_pi’
load(here: :here("data/life_of_pi.rda"))
dt <- tibble(text = read_lines(life_of_pi))

dt

A few things to do in cleaning:

e assign each line a chapter number

e remove all the title lines: “Yann Martel: Life of Pi”
o remove all the page lines: “Page 1”

e remove empty lines

dt_clean <- dt |>

mutate (
# how can you locate the lines with new chapter?
chapter = str_...(text, "..."),
# how can you locate the page lines: "Page 1"?
page = str_...(text, "..."),
# how can you locate the title lines: "Yann Martel: Life of Pi"?
title = str_...(text, "...")) [>
# assign each line a chapter number
mutate(chapter = ... (chapter)) |[>
# remove empty lines:
mutate(blank = str_detect(text, "[a-zA-Z0-9]+", negate = ...)) [|>

# remove all the page and title line, empty line, and lines before chapter 1
filter(...) [>
select(-page, -title, -blank)



1.3 Unnest token
unnest_tokens:

e tbl: A data frame

e output: Output column to be created as string or symbol.

o input: Input column that gets split as string or symbol. The output/input arguments are passed by
expression and support quasiquotation; you can unquote strings and symbols.

o token: Unit for tokenizing, or a custom tokenizing function. Built-in options are “words” (default),
“characters”, “character_shingles”, “ngrams”, “skip_ngrams”, “sentences”, “lines”, “paragraphs”,
“regex”, and “ptb” (Penn Treebank). If a function, should take a character vector and return a list of
character vectors of the same length.

dt_tokens <- dt_clean |>
unnest_tokens (output = word, input = ..., token = "...")
dt_tokens

1.4 Stop words

What are the most common words in Life of Pi?

dt_tokens |> count(word, sort = TRUE)

Are they useful for the analysis?
In the tidytext package, there is a built-in dataset called stop_words that contains common stop words
from three lexicons: “onix”, “SMART”, and “snowball”.

tidytext::stop_words
stop_words |> count(lexicon)

We want to merge the two datasets together so that only the token NOT in the stopword_df is preserved -
which join should we use?
stopword_df <- stop_words |>

filter(lexicon == "SMART") |[>

select (word)

dt_joined <- dt_tokens |> ..._join(stopword_df, by = "word")
dt_joined

1.5 Sentiment data

In the tidytext package, there is a built-in dataset called sentiments that contains words and their
associated sentiments from three lexicons: “AFINN”, “bing”, and “nrc”.

We want to attach each word with a sentiment label (positive or negative). We can only do that for words
that’s in the sentiments dictionary - Which join should we use?
tidytext: :sentiments
dt_joined2 <- dt_joined |>
..._join(sentiments, by = "word")
dt_joined?2

What happen if you use left_join()?



1.6 Visualization

It can be useful to look at how the positive/ negative sentiment changes as the story progresses. How would
you calculate the proportion of positive sentiment words in each chapter?

sentiment_df <- dt_joined2 |>
group_by(chapter, sentiment) |>
summarise(n = n(), .groups = "drop") |>
pivot_wider (names_from = sentiment, values_from = n) |>
mutate(prop = positive / (positive + negative))

sentiment_df2 <- dt_joined2 |>
group_by(chapter, sentiment) |>
summarise(n = n(), .groups = "drop") |[>
group_by (chapter) |>
mutate(prop = n / sum(n)) |>
filter(sentiment == "positive")

sentiment_df2 |[>
ggplot(aes(x = chapter, y = prop)) +
geom_line() +
geom_point () +
geom_hline(yintercept = 0.5, linetype = "dashed")

Does any part of this plot prompt further investigation?

sentiment_df2 |> arrange(-prop)
dt_clean |> filter(chapter == 18)

How come we have Chapter 18 labelled for Chapter 197

dt_clean |> filter(chapter == 7)
dt_clean |> filter(chapter == 8)
dt_clean |> filter(chapter == 10)
dt_clean |> filter(chapter == 13)
dt_clean |> filter(chapter == 15)
dt_clean |> filter(chapter == 14)

Something is funny at Chapter 14 and 15.
dt_clean |> filter(chapter == 14) |> View()

What do you find when you View() Chapter 147 Can you tell why this is the case? What would you do to
fix it?
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